THE STRUCTURE OF RAINBOW-FREE COLORINGS FOR LINEAR EQUATIONS ON THREE VARIABLES IN Zp
نویسندگان
چکیده
Let p be a prime number and Zp be the cyclic group of order p. A coloring of Zp is called rainbow–free with respect to a certain equation, if it contains no rainbow solution of the equation, that is, a solution whose elements have pairwise distinct colors. In this paper we describe the structure of rainbow–free 3–colorings of Zp with respect to all linear equations on three variables. Consequently, we determine those linear equations on three variables for which every 3–coloring (with nonempty color classes) of Zp contains a rainbow solution of it.
منابع مشابه
Rainbow-free 3-colorings in abelian groups
A 3–coloring of an abelian group G is rainbow–free if there is no 3–term arithmetic progression with its members having pairwise distinct colors. We describe the structure of rainbow–free colorings of abelian groups. This structural description proves a conjecture of Jungić et al. on the size of the smallest chromatic class of a rainbow–free coloring of cyclic groups.
متن کاملRainbow-free 3-colorings of Abelian Groups
A 3–coloring of the elements of an abelian group is said to be rainbow–free if there is no 3–term arithmetic progression with its members having pairwise distinct colors. We give a structural characterization of rainbow–free colorings of abelian groups. This characterization proves a conjecture of Jungić et al. on the size of the smallest chromatic class of a rainbow–free 3–coloring of cyclic g...
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملOn the complexity of generalized chromatic polynomials
J. Makowsky and B. Zilber (2004) showed that many variations of graph colorings, called CP-colorings in the sequel, give rise to graph polynomials. This is true in particular for harmonious colorings, convex colorings, mcct-colorings, and rainbow colorings, and many more. N. Linial (1986) showed that the chromatic polynomial χ(G;X) is #P-hard to evaluate for all but three values X = 0, 1, 2, wh...
متن کاملHow many delta-matroids are there?
J. Makowsky and B. Zilber (2004) showed that many variations of graph colorings, called CP-colorings in the sequel, give rise to graph polynomials. This is true in particular for harmonious colorings, convex colorings, mcct-colorings, and rainbow colorings, and many more. N. Linial (1986) showed that the chromatic polynomial χ(G;X) is #P-hard to evaluate for all but three values X = 0, 1, 2, wh...
متن کامل